Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559088

RESUMO

To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.

2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352547

RESUMO

The primary control methods for the African malaria mosquito, Anopheles gambiae, are based on insecticidal interventions. Emerging resistance to these compounds is therefore of major concern to malaria control programmes. The organophosphate, pirimiphos-methyl, is a relatively new chemical in the vector control armoury but is now widely used in indoor residual spray campaigns. Whilst generally effective, phenotypic resistance has developed in some areas in malaria vectors. Here, we used a population genomic approach to identify novel mechanisms of resistance to pirimiphos-methyl in Anopheles gambiae s.l mosquitoes. In multiple populations, we found large and repeated signals of selection at a locus containing a cluster of detoxification enzymes, some of whose orthologs are known to confer resistance to organophosphates in Culex pipiens. Close examination revealed a pair of alpha-esterases, Coeae1f and Coeae2f, and a complex and diverse pattern of haplotypes under selection in An. gambiae, An. coluzzii and An. arabiensis. As in Cx. pipiens, copy number variation seems to play a role in the evolution of insecticide resistance at this locus. We used diplotype clustering to examine whether these signals arise from parallel evolution or adaptive introgression. Using whole-genome sequenced phenotyped samples, we found that in West Africa, a copy number variant in Anopheles gambiae is associated with resistance to pirimiphos-methyl. Overall, we demonstrate a striking example of contemporary parallel evolution which has important implications for malaria control programmes.

3.
Nat Commun ; 14(1): 4946, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587104

RESUMO

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Anopheles/genética , Inseticidas/farmacologia , Estudo de Associação Genômica Ampla , Organofosfatos/farmacologia , Piretrinas/farmacologia
4.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36712022

RESUMO

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.

5.
Indian J Hematol Blood Transfus ; 37(4): 632-639, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34690456

RESUMO

Currently, blood donors in Ghana are not screened for malaria parasites. Therefore, this study assessed platelet thrombogenicity in blood donors infected asymptomatically with Plasmodium falciparum and the relationship between tumour necrosis factor alpha (TNF-α), 8-iso-prostaglandin F2α oxidative stress biomarker (8-iso-PG2α), C-reactive protein (hs-CRP) and D-dimer, and platelet thrombogenes levels. Haematology analyser was used to enumerate platelet count and platelet indices in 80 P. falciparum infected blood donors and 160 matched non-infected controls. Replicate serum levels of von Willebrand Factor (vWF), platelet factor 4 (PF4), P-selectin thrombogenic factors as well as TNF-α and 8-iso-PG2α were determined using enzyme immuno-assay while high sensitive hs-CRP and D-dimer concentrations were determined by fluorescent immunoassay. The geometric mean of parasite density in malaria infected donors was 1784 parasites/µL (505-2478 parasites/µL). This led to significant increase in the mean levels of 8-iso-PG2α, hs-CRP, TNF-α and D-dimer. However, PF4, P-selectin were significantly lower in infected donors while vWF levels did not differ significantly among the groups even though lower levels were observed in the infected donors. Significant direct relationship existed between both P-selectin and PF4 and platelet count, and plateletcrit and platelet large cell ratio whereas these thrombogenic factors varied inversely to 8-iso-PG2α, TNF-α and hs-CRP. Relative thrombocytopaenia was associated with significant reduction in P-selectin and platelet factor 4 levels together with increased 8-iso-PG2α, hs-CRP, TNF-α and D-dimer levels. Taken together, it is recommended that all P. falciparum infected blood donors should be deferred.

6.
PLoS Genet ; 17(1): e1009253, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476334

RESUMO

Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.


Assuntos
Acetilcolinesterase/genética , Resistência a Inseticidas/genética , Malária/genética , Malária/transmissão , África Ocidental , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/parasitologia , Variações do Número de Cópias de DNA/genética , Genes Duplicados/genética , Introgressão Genética/genética , Humanos , Inseticidas/efeitos adversos , Malária/parasitologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Compostos Organotiofosforados/efeitos adversos , Compostos Organotiofosforados/farmacologia
7.
J Immunol Res ; 2020: 9394585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195706

RESUMO

Although Plasmodium falciparum infections in blood donors have been reported, the impact of parasitaemia on cytokine levels in stored whole blood has not been explored. This study evaluated the effect of P. falciparum parasitaemia on circulating cytokines and their relationship with haematological parameters in banked blood. In this case-control study, two groups of donor whole blood were recruited: P. falciparum-infected donors (parasitaemia: 515-1877 parasites/µL) and noninfected blood donors (control). At day 0 (baseline), 7, 14, 21, and 35 of banking circulating cytokine levels of tumor necrosis factor alpha (TNF-α), interleukin- (IL-) 12, IL-10, and IL-6 levels and haematological parameters were determined. Kruskal-Wallis test determined differences in weekly cytokine levels while Dunn's post hoc test determined exact significant points. At baseline, the mean TNF-α (33.81 pg/mL vs. 22.70 pg/mL), IL-12 (28.39 pg/mL vs. 16.15 pg/mL), IL-10 (51.04 pg/mL vs. 18.95 pg/mL), and IL-6 (71.03 pg/mL vs. 30.89 pg/mL) levels were significantly higher in infected donor whole blood. Significant rate of increase was observed in TNF-α, IL-12 levels, and TNF-α/IL-10 ratios in infected blood, while decreased levels were observed in IL-10. IL-6 peaked at day 21 and fell below baseline level at day 35. Significant changes in TNF-α, IL-12, IL-10, IL-6 levels, and TNF-α/IL-10 ratios in infected donor blood were observed 7 days after storage. Unlike in noninfected stored whole blood, TNF-α, IL-6, IL-12, and TNF-α/IL-10 ratio levels in infected stored whole blood related inversely to haematological parameters (white cells, red cells, platelets, and haemoglobin levels) during storage. However, in both groups, significant direct relationship was observed in IL-10 and haematological parameters. In conclusion, banking of P. falciparum-infected donor whole blood may lead to infusion of large quantities of inflammatory cytokines with potential adverse immunological response in recipients.


Assuntos
Citocinas/sangue , Malária Falciparum/sangue , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adulto , Biomarcadores , Segurança do Sangue , Transfusão de Sangue/normas , Feminino , Interações Hospedeiro-Parasita , Humanos , Interleucina-10/sangue , Interleucina-12/sangue , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia , Fator de Necrose Tumoral alfa/sangue
8.
Vet Parasitol Reg Stud Reports ; 21: 100444, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32862913

RESUMO

Detection of trypanosomes in tsetse or domestic livestock is a basic requirement for epidemiological studies as well as for planning and implementing control measures against tsetse and trypanosomiasis. This epidemiological study aimed at assessing the prevalence of trypanosomes in pigs and tsetse flies in the Jomoro district of the western region of Ghana using molecular techniques. Blood was collected from pigs and biconical traps were used to collect tsetse flies. DNA was isolated from 300 pig blood samples and 300 flies for trypanosome detection and identification by PCR. Packed Cell Volume (PCV) of blood samples from 300 pigs was measured using a micro-haematocrit reader. Glossina palpalis palpalis was the only tsetse species found in the area with fly apparent density of 18.4 fly/trap/day. An overall prevalence of trypanosomes in the study area was 4.3% and 0.8% in pigs and tsetse flies respectively. Mixed infection with Trypanosoma (T.) congolense forest and T. vivax was most prevalent 46.2% followed by single infection of T. vivax 15.4%, T. congolense and a mixed infection of T. congolense, T. vivax and T. brucei sl. were the least with 7.7% each. There were no significant differences in trypanosome prevalence among different age groups and between both sexes of the studied pigs (p > 0.05). Trypanosome prevalence was lower in healthy looking 1.9% than the sick looking 20%, pigs (P < 0.05). Mean PCV of parasitaemic pigs 29.3% was significantly lower than that of aparasitaemic pigs 37.8%. Two out of the five species-specific primers used could not identify any trypanosome species from the total blood samples examined. This could possibly mean that those species are not found in the present study area. These results provide useful background information for further study and justification to extend tsetse control to the Jomoro district.


Assuntos
Doenças dos Suínos/epidemiologia , Trypanosoma/isolamento & purificação , Tripanossomíase/veterinária , Moscas Tsé-Tsé/parasitologia , Animais , Feminino , Gana/epidemiologia , Masculino , Prevalência , Sus scrofa , Suínos , Doenças dos Suínos/parasitologia , Trypanosoma/classificação , Tripanossomíase/epidemiologia , Tripanossomíase/parasitologia
9.
Malar J ; 18(1): 214, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234871

RESUMO

BACKGROUND: Undesirable consequences of donor Plasmodium falciparum parasitaemia on stored donor blood have been reported. Therefore, it is imperative that all prospective blood donors are screened for P. falciparum infections using sensitive techniques. In this study, the sensitivities of microscopy, rapid diagnostic test (RDT), loop-mediated isothermal amplification (LAMP) assay and selective whole genome amplification (sWGA) technique in detecting P. falciparum infections in blood donors was assessed. METHODS: Randomly selected blood donors from 5 districts in Greater Accra Region of Ghana were screened for asymptomatic P. falciparum infections. Each donor sample was screened with SD Bioline RDT kit for P. falciparum histidine rich protein 2 and Plasmodium lactate dehydrogenase antigens, sWGA and 18s-rRNA LAMP. Crude DNA LAMP (crDNA-LAMP) was compared to purified DNA LAMP (pDNA-LAMP). RESULTS: A total of 771 blood donors were screened. The respective overall prevalence of P. falciparum in Ghana by microscopy, RDT, crDNA-LAMP, pDNA-LAMP and sWGA was 7.4%, 11.8%, 16.9%, 17.5% and 18.0%. Using sWGA as the reference test, the sensitivities of microscopy, RDT, crDNA-LAMP and pDNA-LAMP were 41.0% (95% CI 32.7-49.7), 65.5% (95% CI 56.9-73.3), 82.6% (95% CI 75.8-88.3) and 95.7% (95% CI 90.1-98.4), respectively. There was near perfect agreement between LAMP and sWGA (sWGA vs. crDNA-LAMP, κ = 0.87; sWGA vs. pDNA-LAMP, κ = 0.96), while crDNA-LAMP and pDNA-LAMP agreed perfectly (κ = 0.91). Goodness of fit test indicated non-significant difference between the performance of LAMP and sWGA (crDNA-LAMP vs. sWGA: x2 = 0.71, p = 0.399 and pDNA-LAMP vs. sWGA: x2 = 0.14, p = 0.707). Finally, compared to sWGA, the performance of LAMP did not differ in detecting sub-microscopic parasitaemia (sWGA vs. crDNA-LAMP: x2 = 1.12, p = 0.290 and sWGA vs. pDNA-LAMP: x2 = 0.22, p = 0.638). CONCLUSIONS: LAMP assay agreed near perfectly with sWGA with non-significant differences in their ability to detect asymptomatic P. falciparum parasitaemia in blood donors. Therefore, it is recommended that LAMP based assays are employed to detect P. falciparum infections in blood donors due to its high sensitivity, simplicity, cost-effectiveness and user-friendliness.


Assuntos
Testes Diagnósticos de Rotina/normas , Malária Falciparum/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/normas , Plasmodium falciparum/genética , Adulto , Infecções Assintomáticas , Testes Diagnósticos de Rotina/métodos , Feminino , Gana , Humanos , Masculino , Técnicas de Amplificação de Ácido Nucleico/economia , RNA Ribossômico 18S/genética , Adulto Jovem
10.
J R Soc Interface ; 16(153): 20180941, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30966952

RESUMO

Vector-borne disease control relies on efficient vector surveillance, mostly carried out using traps whose number and locations are often determined by expert opinion rather than a rigorous quantitative sampling design. In this work we propose a framework for ecological sampling design which in its preliminary stages can take into account environmental conditions obtained from open data (i.e. remote sensing and meteorological stations) not necessarily designed for ecological analysis. These environmental data are used to delimit the area into ecologically homogeneous strata. By employing Bayesian statistics within a model-based sampling design, the traps are deployed among the strata using a mixture of random and grid locations which allows balancing predictions and model-fitting accuracies. Sample sizes and the effect of ecological strata on sample sizes are estimated from previous mosquito sampling campaigns open data. Notably, we found that a configuration of 30 locations with four households each (120 samples) will have a similar accuracy in the predictions of mosquito abundance as 200 random samples. In addition, we show that random sampling independently from ecological strata, produces biased estimates of the mosquito abundance. Finally, we propose standardizing reporting of sampling designs to allow transparency and repetition/re-use in subsequent sampling campaigns.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Anopheles/efeitos dos fármacos , Ecossistema , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Projetos de Pesquisa
11.
BMC Hematol ; 18: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450212

RESUMO

BACKGROUND: In sub-Saharan Africa where sickle cell trait (SCT) and malaria is prevalent, significant proportions of blood donors may be affected by one or more of these abnormalities. The haemato-biochemical properties of SCT and asymptomatic malaria in donor blood have not been evaluated. This study evaluated the haemato-biochemical impact of SCT and asymptomatic malaria infections in citrate-phosphate-dextrose-adenine (CPDA-1) stored donor blood units. METHODS: Fifty-milliliters of sterile CPDA-1 anti-coagulated blood were drained into the sample pouch attached to the main blood bag. Ten units each of sickle cell/malaria negative, sickle cell and malaria positive blood were analyzed. Baseline and weekly haematological profiling and week 1, 3 and 5 concentrations of plasma haemoglobin, % haemolysis, sodium, potassium and chloride and lactate dehydrogenase (LDH) were assayed. Differences between baseline and weekly data were determined using one-way analysis of variance (ANOVA) and Kruskal-Wallis test, whereas differences between baseline parameters and week 1-3 data pairs were determined using paired t-test. P-value < 0.05 was considered statistically significant. RESULTS: Storage of SCT and malaria infected blood affected all haematological cell lines. In the SCT donors, red blood cells (RBC) (4.75 × 1012/L ± 1.43baseline to 3.49 × 1012/L ± 1.09week-5), haemoglobin (14.45 g/dl ± 1.63baseline to 11.43 g/dl ± 1.69week-5) and haematocrit (39.96% ± 3.18baseline to 33.22% ± 4.12week-5) were reduced. In the asymptomatic malaria group, reductions were observed in RBC (5.00 × 1012/L ± 0.75baseline to 3.72 × 1012/L ± 0.71week-5), haemoglobin (14.73 g/dl ± 1.67baseline to 11.53 g/dl ± 1.62week-5), haematocrit (42.72% ± 5.16baseline to 33.38% ± 5.80week-5), mean cell haemoglobin concentration (35.48 g/dl ± 1.84baseline to 35.01 g/dl ± 0.64week-5) and red cell distribution width coefficient of variation (14.81% ± 1.54baseline to 16.26% ± 1.37week-5). Biochemically, whereas plasma LDH levels significantly increased in asymptomatic malaria blood donors (319% increase at week 5 compared to baseline), SCT blood donors had the most significant increase in plasma potassium levels at week 5 (382% increase). Sodium ions significantly reduced in SCT/malaria negative and sickle cell trait blood at an average rate of 0.21 mmol/L per day. Moreover, elevations in lymphocytes-to-eosinophils and lymphocytes-to-neutrophils ratios were associated with SCT and malaria positive blood whilst elevation lymphocytes-to-basophils ratio was exclusive to malaria positive blood. CONCLUSION: Severe storage lesions were significant in SCT or malaria positive donor blood units. Proper clinical evaluation must be done in prospective blood donors to ensure deferral of such donors.

12.
Parasit Vectors ; 9(1): 504, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628765

RESUMO

BACKGROUND: Understanding the dynamics of insecticide resistance in African malaria vectors is crucial for successful implementation of resistance management strategies in the continent. This study reports a high and multiple insecticide resistance in Anopheles funestus from southern Ghana which could compromise the Malaria Operational Plan in this country, if not tackled. Adult Anopheles mosquitoes were collected in Obuasi and Adawukwa, in southern Ghana. Plasmodium infection rates, susceptibility to the main insecticides used in public health and the molecular basis of insecticide resistance were established. RESULTS: An. funestus (sensu stricto) (s.s.) was the predominant mosquito species found resting inside the houses in Obuasi, while at Adawukwa it was found together with An. coluzzii. Parasite rates were high in An. funestus (s.s.) populations from both localities, with Plasmodium infection rates greater than 12.5 %. Both, An. funestus (s.s.) and An. coluzzii, from the two sites exhibited high resistance to the insecticide from various classes including the pyrethroids, carbamates and DDT, but remained fully susceptible to the organophosphates. A preliminary characterization of the underlying molecular mechanisms of resistance in An. funestus (s.s.) populations from both sites revealed that CYP6P9a, CYP6P9b, CYP6M7 and GSTe2 genes are upregulated, markedly higher in Obuasi (between 3.35 and 1.83 times) than in Adawukwa population. The frequency of L119F-GSTe2 and A296S-RDL resistance markers were also higher in Obuasi (42.5 and 68.95 % higher), compared with An. funestus (s.s.) populations from Adawukwa. These findings suggest that the similar resistance pattern observed in both An. funestus (s.s.) populations are driven by different mechanisms. CONCLUSIONS: Resistance to multiple insecticides in public health use is present in malaria vectors from Ghana with major resistance genes already operating in the field. This should be taken into consideration in the design of resistance management strategies to avoid operational failure.


Assuntos
Anopheles/genética , Genes de Insetos , Resistência a Inseticidas/genética , Malária/prevenção & controle , Animais , Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Carbamatos/farmacologia , Feminino , Gana/epidemiologia , Inseticidas/farmacologia , Malária/epidemiologia , Malária/parasitologia , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Transcriptoma
13.
J Parasitol Res ; 2015: 959427, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448871

RESUMO

Malaria infections undetectable by microscopy but detectable by Polymerase Chain Reaction (PCR) (submicroscopic malaria) are common in endemic areas like Ghana. Submicroscopic malaria has been linked with severe pregnancy outcomes as well as contributing to malaria transmission. In this cross-sectional study 872 consenting pregnant women (gestation ≥ 20 weeks) were recruited from 8 hospitals in Central Region, Ghana, between July and December 2009. Malaria infection was detected by microscopy and PCR. Haemoglobin was measured and anaemia was defined as haemoglobin lower than 11 g/dL. Majority of the women, 555 (63.6%), were Intermittent Preventive Treatment in Pregnancy with Sulphadoxine-Pyrimethamine (IPTp-SP) users while 234 (36.4%) were nonusers. The prevalence of malaria by microscopy was 20.9% (182/872) and 9.7% (67/688) of microscopy negative women had submicroscopic malaria. IPTp-SP usage significantly (odds ratio = 0.13, 95% confidence interval = 0.07-0.23, p = 0.005) reduced the prevalence of submicroscopic malaria as more nonusers (51/234) than users (16/454) were PCR positive. After controlling for other variables the effect of IPTp-SP remained statistically significant (odds ratio = 0.11, 95% confidence interval = 0.02-0.22, p = 0.006). These results suggest that Intermittent Preventive Treatment with Sulphadoxine-Pyrimethamine is useful in the reduction of submicroscopic malaria in pregnancy.

14.
Acta Trop ; 136: 32-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24727053

RESUMO

Plasmodium falciparum has successfully developed resistance to almost all currently used antimalarials. A single nucleotide polymorphism in the P. falciparum chloroquine resistance transporter (Pfcrt) gene at position 76 resulting in a change in coding from lysine to threonine (K76T) has been implicated to be the corner stone of chloroquine resistance. Widespread resistance to chloroquine in endemic regions led to its replacement with other antimalarials. In some areas this replacement resulted in a reversion of the mutant T76 allele to the wild-type K76 allele. This study was conducted to determine the prevalence of the K76T mutation of the Pfcrt gene eight years after the ban on chloroquine sales and use. A cross-sectional study was conducted in 6 regional hospitals in Ghana. PCR-RFLP was used to analyse samples collected to determine the prevalence of Pfcrt K76T mutation. Of the 1318 participants recruited for this study, 246 were found to harbour the P. falciparum parasites, of which 60.98% (150/246) showed symptoms for malaria. The prevalence of the Pfcrt T76 mutant allele was 58.54% (144/246) and that of the K76 wild-type allele was 41.46% (102/246). No difference of statistical significance was observed in the distribution of the alleles in the symptomatic and asymptomatic participants (P=0.632). No significant association was, again, observed between the alleles and parasite density (P=0.314), as well as between the alleles and Hb levels of the participants (P=0.254). Notwithstanding the decline in the prevalence of the Pfcrt T76 mutation since the antimalarial policy change in 2004, the 58.54% prevalence recorded in this study is considered high after eight years of the abolishment of chloroquine usage in Ghana. This is in contrast to findings from other endemic areas where the mutant allele significantly reduced in the population after a reduction chloroquine use.


Assuntos
Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Adulto , Animais , Antimaláricos/farmacologia , Cloroquina/farmacologia , Gana/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Proteínas de Membrana Transportadoras/genética , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética
15.
Acta Trop ; 132 Suppl: S2-11, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24252487

RESUMO

The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term community-wide efforts. The sterile insect technique (SIT), whose success hinges on having a good understanding of the biology and behaviour of the male mosquito, is an additional weapon in the limited arsenal against mosquito vectors. The successful production and release of sterile males, which is the mechanism of population suppression by SIT, relies on the release of mass-reared sterile males able to confer sterility in the target population by mating with wild females. A five year Joint FAO/IAEA Coordinated Research Project brought together researchers from around the world to investigate the pre-mating conditions of male mosquitoes (physiology and behaviour, resource acquisition and allocation, and dispersal), the mosquito mating systems and the contribution of molecular or chemical approaches to the understanding of male mosquito mating behaviour. A summary of the existing knowledge and the main novel findings of this group is reviewed here, and further presented in the reviews and research articles that form this Acta Tropica special issue.


Assuntos
Fenômenos Biológicos , Culicidae/genética , Culicidae/fisiologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Masculino
16.
Proc Natl Acad Sci U S A ; 109(16): 6147-52, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22460795

RESUMO

In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Animais , Anopheles/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/metabolismo , DDT/farmacologia , Feminino , Perfilação da Expressão Gênica , Gana , Humanos , Proteínas de Insetos/metabolismo , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/classificação , Inseticidas/metabolismo , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Piretrinas/metabolismo , Piretrinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Biol Evol ; 27(5): 1117-25, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20056691

RESUMO

Alleles subject to strong, recent positive selection will be swept toward fixation together with contiguous sections of the genome. Whether the genomic signatures of such selection will be readily detectable in outbred wild populations is unclear. In this study, we employ haplotype diversity analysis to examine evidence for selective sweeps around knockdown resistance (kdr) mutations associated with resistance to dichlorodiphenyltrichloroethane and pyrethroid insecticides in the mosquito Anopheles gambiae. Both kdr mutations have significantly lower haplotype diversity than the wild-type (nonresistant) allele, with kdr L1014F showing the most pronounced footprint of selection. We complement these data with a time series of collections showing that the L1014F allele has increased in frequency from 0.05 to 0.54 in 5 years, consistent with a maximum likelihood-fitted selection coefficient of 0.16 and a dominance coefficient of 0.25. Our data show that strong, recent positive selective events, such as those caused by insecticide resistance, can be identified in wild insect populations.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Modelos Genéticos , Mutação/genética , Seleção Genética , Alelos , Animais , Feminino , Frequência do Gene/genética , Loci Gênicos/genética , Testes Genéticos , Gana , Haplótipos/genética , Homozigoto , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA